A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring

نویسندگان

  • Fang Yi
  • Xiaofeng Wang
  • Simiao Niu
  • Shengming Li
  • Yajiang Yin
  • Keren Dai
  • Guangjie Zhang
  • Long Lin
  • Zhen Wen
  • Hengyu Guo
  • Jie Wang
  • Min-Hsin Yeh
  • Yunlong Zi
  • Qingliang Liao
  • Zheng You
  • Yue Zhang
  • Zhong Lin Wang
چکیده

The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com (1 of 8) 1604378 multidisciplinary fields.[1,2] As a result, stretchable devices, such as lithium-ion batteries,[3] organic light-emitting diodes,[4] electrochemical supercapacitors,[5] fieldeffect transistors,[6] and artificial skin sensors[7,8] have been widely studied. This new class of electronics allows devices to be ...

متن کامل

Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester

The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...

متن کامل

Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing

Wearable technologies have been considered as the next-generation electronics in the near future owing to their promising applications in a vast of fields ranging from biomedical/wellness monitors, wearable human-interactive interfaces, to shape-adaptive military and consumer electronics.[1–4] Typically, those electronics are needed to be powered by rechargeable batteries. However, conventional...

متن کامل

Stretchable piezoelectric nanocomposite generator

Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricit...

متن کامل

An Adaptive Self-powered Piezoelectric Energy Harvesting Circuit and Its Application on Bridge Condition Monitoring

The abundant mechanical vibration energy in bridge road environment can be converted into electric energy by using the piezoelectric energy harvest technology, which could be an efficient way to provide energy required by the wireless sensor network in the bridge condition monitoring system. An autonomous energy harvesting system has been designed based on cantilever beams for sensing and acqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016